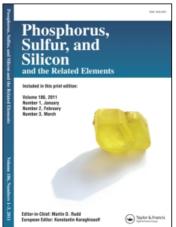
This article was downloaded by:


On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

VIBRATIONAL SPECTRA OF CH₃PO(OCH₃)₂ AND ISOTOPICALLY SUBSTITUTED DERIVATIVES

B. J. Van Der Veken^a; M. A. Herman^a

^a Laboratorium Anorganische Scheikunde, Rijksuniversitair Centrum Antwerpen, Antwerpen, Belgium

To cite this Article Van Der Veken, B. J. and Herman, M. A.(1981) 'VIBRATIONAL SPECTRA OF CH PO(OCH₃) AND ISOTOPICALLY SUBSTITUTED DERIVATIVES', Phosphorus, Sulfur, and Silicon and the Related Elements, 10: 3, 357 — 367

To link to this Article: DOI: 10.1080/03086648108077388 URL: http://dx.doi.org/10.1080/03086648108077388

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL SPECTRA OF CH₃PO(OCH₃)₂ AND ISOTOPICALLY SUBSTITUTED DERIVATIVES

B. J. VAN DER VEKEN and M. A. HERMAN

Laboratorium Anorganische Scheikunde, Rijksuniversitair Centrum Antwerpen, Groenenborgerlaan 171, B2020 Antwerpen, Belgium.

(Received September 17, 1980, in final form December 1, 1980)

Infrared, far-infrared and Raman spectra of liquid CH₃PO(OCH₃)₂, CD₃PO(OCH₃)₂, CH₃PO(OCD₃)₂, CD₃PO(OCD₃)₂ and CH₃PO(O¹³CH₃)₂ are reported and the assignments proposed. Possible conformational splittings are discussed.

INTRODUCTION

The NaCl region of the infrared spectrum of pure CH₃PO(OCH₃)₂ was reported many years ago by Meyrick et al. In the published spectrum, not only fine structure, but also an intense band is missing. These earlier investigators made no attempt to interpret the observed bands in detail. This same study¹ reports Raman data in which several fairly strong bands are missing. In a later infrared study by Guilbault et al,2 only the most intense bands of the region down to only 700 cm⁻¹ have been assigned. Results on the CH₃-P and CH₃-OP vibrations in i.r. have been reported by F. Hérail,^{3,4} while the same author has given some attention to the v(P=O).⁵ Although some earlier work is recorded, it is clear that insufficient data have been published to allow the complete assignment of the fundamentals. Therefore it was thought necessary to reinvestigate the i.r. and Raman spectra of the normal compound $CH_3PO(OCH_3)$, (H9), using isotope substitution as a tool to confirm assignments. Species studied were: CD₃PO-(OCH₃)₂(D3), CH₃PO(OCD₃)₂ (D6), CD₃PO- $(OCD_3)_2$ (D9) and $CH_3PO(O^{13}CH_3)_2$ (13C), which makes the assignments more reliable. The symbols between brackets will be used in the following to indicate the correct species.

EXPERIMENTAL

The Raman spectra were recorded with a Coderg PHO instrument, equipped with an OIP 181E He Ne laser and a Spectra-Physics Model 164 Ar*-laser. Spectra were recorded with 8 cm⁻¹ slit width, unless otherwise specified, in standard 0.3 ml

cells, except 13C which was recorded in a capillary. Frequency calibration of the instrument was done with benzenc and CCl₄.

The infrared spectra were recorded on a Perkin-Elmer 580 instrument, using a slit program with a maximum resolution of 3.7 cm⁻¹. Pure liquids were investigated in a 0.1 mm CsI cell and as a film between AgCl windows. Solutions of approximately 5% by volume were run in a 0.1 mm CsI cell. In these cases solvent absorptions were matched with a variable path CsI cell in the reference beam.

The far infrared spectra were run on a Beckman 1R 720 Fourier transform spectrometer using Mylar beam splitters of $6.25 \, \mu m$ and $12.5 \, \mu m$, in polyethylene cells of 1 mm thickness, as solutions of approximately $15 \, \%$ by volume in benzene and CCl_4 .

Intensity indications for the i.r. spectra in the tables apply to the mid-infrared spectra of the solutions, and to the 0.1 mm recordings of the pure liquids.

DISCUSSION

Dimethylmethylphosphonate has 16 atoms and thus 42 normal vibrations. As has been shown by a theoretical treatment of this compound, 6 for the most favourable conformers no symmetry elements other than the unit operation are present, which means the molecular point group is C_1 . As a consequence, all fundamentals, over- and combination bands are allowed both in i.r. and Raman, while in the latter all bands can be polarized.

The characteristic vibrations that have to be assigned are gathered in Table I. Most of these need no comment. The P-O stretches are described as coupled to a symmetric and an asymmetric component: this is justified by the identity of the two chemical bonds and the common central atom. The absence of the latter is the reason for

TABLE I
Characteristic vibrations of CH₃PO(OCH₃)₂

Туре	Symbol	Number
CH ₃ (O) stretches	v_a, v_a', v_s	6
CH ₃ (O) deformations	$\delta_a, \delta_a, \delta_s$	6
CH ₃ (O) rockings	ho, ho'	4
CH ₃ (O) torsion	τ	2
CH ₃ (P) stretches	v_a, v_a', v_s	2 3
CH ₃ (P) deformations	$\delta_a, \delta_a, \delta_s$	3
CH ₃ (P) rockings	ρ, ρ'	2
CH ₃ (P) torsion	τ	1
P=O stretch	ν	1
P-O stretches	v_a, v_s	2
C—O stretches	v	2
P-C stretch	v	1
CPO ₃ deformations	$\delta_a, \delta_a', \delta_s$	3
CPO ₃ rockings	ρ, ρ'	
POC in plane deformations	δ	2
POC out-of-plane deformations	δ	2 2 2
	tota	

treating the C-O stretches separately. For $CH_3PO_3^{2-}$, a clear description as $\delta(CPO_3)$ (a_1+e) and $\rho(CPO_3)$ (e) of the skeletal deformations is possible; for $CH_3PO_3H_2$ the same nomenclature was used for these modes, owing to the similarity of the vibrational spectra in the concerned region. Because of the structural resemblance of the $CH_3PO_3H_2$ skeleton with the skeleton of the present compounds, we will use the notations of $CH_3PO_3H_2$, and thus of $CH_3PO_3^{2-}$, to describe the skeletal deformational modes in the compounds presently under investigation.

In order to be able to distinguish between out-ofplane deformations of the P-O-C parts, for which only secondary isotope effects are expected, and methyl torsions, it is necessary to know the effects on the latter. It has been shown by J. Laane that the v_H/v_D ratio for this type of vibrations depends on the barrier height.8 Assuming identical barriers in CH₃ and CD₃ compounds, and using the barriers determined by inelastic neutron scattering,9 with the inertial constants of model geometries described before,6 these ratios were determined as 1.39 for CH₃-P and 1.37 for CH₃-O groups, independent of the conformation (whose influence comes from the reduced moment of inertia in the rotational constant). This means that for the methyl torsions isotopic shifts are expected that are very similar to those of harmonic oscillator H/D substitution (1.36 for CH/CD).

As an example, in Figures 1 and 2 the mid-infrared and Raman spectrum of H9 are shown;¹⁰ the frequencies together with the proposed assignments are gathered in Tables II to VI.

The CH₃ stretching region of H9 appears rather complex. Comparison with D3 and D6 however allows assignment of the observed bands to modes localised in CH₃(O) and CH₃(P) groups. This region in D6 appears as could be anticipated for a methyl group. The situation is different however for D3, where one depolarized and two polarized bands are found. The latter two are, in agreement with observations on other O-CH₃ compounds, assigned to ν_s (CH₃O) and $2\delta_s$ (CH₃O), of which the

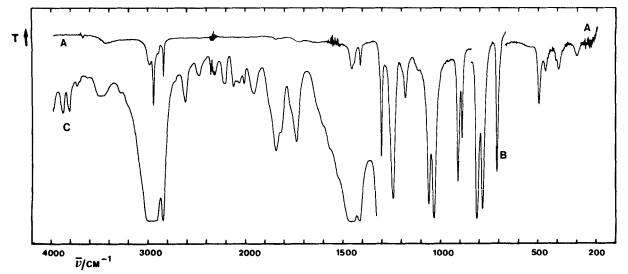


FIGURE 1 Infrared spectrum of liquid CH₃PO(OCH₃)₂. A: 5%-solution in CCl₄; B: 5%-solution in CS₂; C: pure liquid.

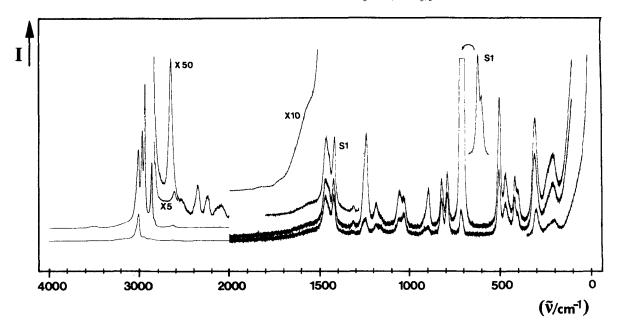


FIGURE 2 Raman spectrum of liquid CH₃PO(OCH₃)₂. (S1: details recorded with 1 cm⁻¹ slit).

latter is in strong Fermi resonance with the former. Analogously, the region of CD₃ stretches is analyzed. Here also some unusual bands are observed, which we interpret to be due to Fermi resonances and wherefor possible interpretations are presented in the tables.

The assignments of F. Hérail of the CH₃(P) and CH₃(O) deformation and rocking vibrations^{3,5} are substantiated by the present deuteration experiments. No special problems are encountered in detecting and assigning the CD₃ deformations and rockings.

The v(P=0) in H9 has been observed to be split in two components¹¹ which was taken as evidence for the presence of two conformers in the liquid. We observe the same splitting in all the isotopic derivatives; this appears to lend support to the above proposal. If we look at the frequency of the most intense component (the other one appears as a shoulder, preventing accurate reading of the band maximum), we observe an upward shift, both in the pure liquid as in apolar solvents, when passing from H9 to D9. This behaviour can be explained by coupling of v(P=0) with methyl deformations. In H9 they all lie on the high frequency side of v(P=O), giving rise to a lowering of the latter. With increasing deuteration, more methyl deformations fall below v(P=O), which in the case of coupling would tend to shift v(P=O) in the opposite direction. Anyway, although the observations show that coupling exists, the magnitude of the shifts indicates the coupling is small.

L. C. Thomas¹² has specified the region from 680 to 785 cm⁻¹ for the P-C stretch. It was assigned for H9 in i.r. to the 714 cm⁻¹ band by G. G. Guilbault,² and to the band at 785 cm⁻¹ by F. Hérail.³ For CH₃PO₃H₂ and its anions this stretch has been assigned to the highly polarized, most intense band in the Raman spectrum near 760 cm⁻¹.¹³ In the appropriate region of the Raman spectrum of H9, two bands are found at 786 and 712 cm⁻¹ respectively. As is clear from Figure 2, the latter is the most intense band of the spectrum and is highly polarized, while the former is of medium intensity and depolarized. The analogy with CH₃PO₃H₂ then requires that the P-C stretch must be assigned to the 712 cm⁻¹ band as suggested by Guilbault.² The same arguments were used to locate this vibration in the isotopically substituted derivatives. A high resolution scan of this band of H9 in Raman shows that it is actually a doublet, a weaker component appearing on the low frequency side. This, as for v(P=O) could indicate the presence of two conformers in the liquid. Remarkable is the disappearance of the splitting in D3 and D9, accompanied by drastic intensity changes of other bands in the same region of the Raman spectra. A full understanding

TABLE II

Vibrational spectra of CH₃PO(OCH₃)₂

i. r .	i.r.	i.r.	Raman	
pure	CCl₄	CS ₂	pure	
•	$\bar{v}I$	ν I	νī	Assignments
νĪ	V I	v 1	V 1	Assignments
2000				894 + 2992 = 3886
3890 w				
3825 w				894 + 2922 = 3816
3745 vw				786 + 2951 = 3737
	3688 vw			712 + 2951 = 3663
3630 vw)
3520 w				H_2O
3460 w	3450 vw	3450 vw		J
3295 vw				303 + 2992 = 3295
02000	3015 sh		3015 sh	$v_a(CH_3O), v'_a(CH_3O)$
2995	2995 m	2990 m	2992 m	$v_a(CH_3P), v_a(CH_3P)$
2955	2952 m	2950 m	2951 m, p	ν _s (CH ₃ O)
	2908 vw	2905 vw		$v_s(CH_3P)$
2930			2922 s, p	
2852 s	2851 m	2848 m	2848 m, p	$2\delta_s(CH_3O)$ (see text)
			2820 vw, sh	$1418 \times 2 = 2836$
2625 w			2609 vw	1185 + 1450 = 2635
2490 w			2480 w	$1236 \times 2 = 2476$
2320 w			$2320 \ vw$	1418 + 849 = 2312
2220 w			2211 vw	$\int 786 + 1418 = 2204$
2135 w			2116 vw, sh	$\{1065 \times 2 = 2130\}$
2075 w			2052 vw	818 + 1238 = 2056
2025 w				786 + 1238 = 2024
				1286 + 1183 = 1969
1962 w				818 + 1152 = 1970
1075 /				1065 + 818 = 1883
1875 sh	1055	10.47		
1848 m	1855 vw	1847 vw		1037 + 818 = 1855
1822 <i>sh</i>	1825 vw	1823 vw		1037 + 786 = 1823
1775 sh				1065 + 712 = 1777
1740 m	1750 vw	1747 vw		1240 + 499 = 1739
1605 sh				818 + 786 = 1604
1565 sh				1065 + 499 = 1564
1535 sh				1048 + 499 = 1538
1465	1462 w		1463 m	$\delta_a(CH_3O), \delta'_a(CH_3O)$
1450	1450 sh		1450 sh	$\delta_{s}(CH_{3}O)$
	1430 sh		1418 m	$\delta_a(CH_3P), \delta_a'(CH_3P)$
1418 s		1200 -		
1312	1309 m	1308 s	1310 vw, p	$\delta_s(CH_3P)$
1260(~)	1270 sh	1270 sh	1257 sh	v(P=O) (see text)
1240	1250 vs	1250 vs	1238 s, p	v(P=O)
1185	1185 m	1185 m	1183 w, p	$\rho(CH_3O)$
			1152 vw, sh	$\rho(CH_3O)$
1058	1064 vs	1063 vs	1065 m, p	v(CO)
1032	1037 vs	1037 vs	1048 w	v(CO)
912	914 s	911 s	917 sh	$\rho'(CH_3P)$
895(~)	896 m	892 m	894 m, p	$\rho(CH_3P)$
818	•	814 s	818 m	$v(PO_2)$
=0=		788 m	786 m	$v(PO_2)$
787 712 s		713 m	712 vs, p	"(DC))
1128		113 m	701 sh, p	v(PC) (see text)
		654	/01 sn, p	
400	co:	654 vw	400	231 + 412 = 643
499	501 m	500 m	499 s, p	$\delta(POC)$
467	468 w	468 w	464 m	$\delta_s(CPO_3)$
411	415 <i>sh</i>		412 m	$\delta_a(\text{CPO}_3), \delta_a'(\text{CPO}_3)$
398	398 w		394 w, sh, p	
	307 w		303 s	$\rho(CPO_3), \rho'(CPO_3)$
	232 sh		231 w, sh	γ(POC)
	205		201 m	y(POC)
	98			libration

vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; p: polarized.

TABLE III

Vibrational spectra of CH₃PO(O¹³CH₃)₂

i.r. CCl ₄	i.r. CS ₂	Raman , pure	
v I	ν I	ν I	Assignments
3675 vw	3680 vw		710 + 2947 = 3657
3450 vw	3445 t'w'		H_2O
		3060 vw	220 + 2843 = 3063
3000 w	2995 w	2992 s	$v_a(CH_3O), v'_a(CH_3O)$
2980 w	2977 w		$v_a(CH_3P)$, $v'_a(CH_3P)$
2947 m	2943 m	2945 s	$v_s(CH_3O)$
2903 vw	2899 vw	2921 vs	$v_s(CH_3P)$
2846 w	2843 w	2843 s	$2\delta_3(CH_3O)$ (see text)
	1965 rw		$\begin{cases} 816 + 1150 = 1966 \\ 782 + 1175 = 1957 \end{cases}$
1025	1025		$\int 784 + 1052 = 1836$
1835 vw	1835 vw		(1025 + 814 = 1839)
1805 vw	1808 vw		1025 + 784 = 1809
	1765 vw		1025 + 705 = 1757
1735 vw	1730 vw		1252 + 499 = 1751
1625 vw			H_2O
		1573 vw	1055 + 499 = 1554
1523 m			impurity
1517 sh)
1460 w		1460 m	$\delta_a(CH_3O), \delta'_a(CH_3O)$
1442 sh		1442 sh	$\delta_s(CH_3O)$
1418 w		1417 m	$\delta_a(CH_3P), \delta'_a(CH_3P)$
1309 s	1309 s	1309 vw	$\delta_s(CH_3P)$
$1270(\sim) sh$	$1270(\sim) sh$		v(P=O) (see text)
1252 vs	1253 vs	1239 m	v(P=0)
1177 m	1178 m	1175 w	$\rho(CH_3O)$
		$1150(\sim) sh$	$\rho'(CH_3O)$
1052 vs	1052 vs	$1055(\sim) sh$	ν(CO)
1025 vs	1025 vs	1035 w	v(CO)
1003 w	1002 w		impurity
013	0.1.0	987 w	impurity
913 s	912 s	911 sh	$\rho(CH_3P)$
894 m	893 m	895 vw	$\rho'(CH_3P)$
869 w	014	017	impurity
	814 s	816 w	$v_a(PO_2)$
710	784 m	782 w	$v_s(PO_2)$
710 m $700(\sim) sh$	711 m 700(\sim) sh	705 vs 696 m	v(PC) (see text)
499 m	500 m	499 m	$v(PC)$ (see text) $\delta(POC)$
499 m 467 w	300 m 468 w	499 m 464 w	$\delta_s(CPO_3)$
407 W	400 W	404 w 408 sh) "
406 W 395 W		408 sh 389 sh	$\delta_a(CPO_3), \delta'_a(CPO_3)$
•	204	389 sh 301 m	,
305 w	304 w		$\rho(CPO_3), \rho'(CPO_3)$
		220 sh	γ(POC)
		201 w	γ(POC)

vs: very strong; s: strong; m: medium; w: weak; vw: very weak;
sh: shoulder; p: polarized.

TABLE IV
Vibrational spectra of CD₃PO(OCH₃)₂

i.r.	i.r.	i.r.	Raman	
pure	CCl ₄	CS ₂	pure	
\bar{v} I	νĪ	$\bar{\mathbf{v}}$ I	\bar{v} I	Assignments
3785 vw				802 + 2985 = 3787
3520 w)
3470 w			3472 vw	} H₂O
	3450 vw	3450 vw		Į
3275 w	3275 vw	3270 vw	3014 m	1034 + 2247 = 3281
	3015 sh	3010 sh	2011111)
2995	2992 w	2985 w		$v_a(CH_3O), v'_a(CH_3O)$
	2958 m	2950 m	2956 s, p	v _s (CH ₃ O)
2910 sh	2909 vw	2903 vw	2908 vw	673 + 2247 = 2920
2855 vs	2857 m	2851 m	2852 s, p	$2\delta_s(CH_3O)$ (see text)
2635 w			2620 vw	1185 + 1450 = 2635
			2522 vw	1067 + 1452 = 2519
2490 w				$1246 \times 2 = 2492$
			2377 vw	$1188 \times 2 = 2376$
2243 s	2250 vw		2247 s	$v_a(CD_3P), v_a'(CD_3P)$
2148 s	2150 vw		2152 s, p	$v_s(CD_3P)$
2080 w	2080 vw		2077 w, p	$1067 \times 2 = 2134$
2040 w			2042 m, p	$1034 \times 2 = 2068$
			1967 vw	716 + 1246 = 1962
1905 w	1915 vw	1910 vw		840 + 1069 = 1909
1870 m	1880 vw	1875 vw		840 + 1034 = 1874
1835 m	1840 vw	1840 vw	1847 vw	802 + 1034 = 1836
1735 m	1745 vw	1747 vw		1248 + 487 = 1735
1705 m	1710 vw	1705 vw	1705 vw	673 + 1027 = 1700
1.600	1660 vw	1665 vw		$840 \times 2 = 1680$
1638 vw	1620 vw	1635 vw	1	H ₂ O
	1461		1572 w	716 + 846 = 1562
1465	1461 m		1468 s	$\delta_a(CH_3O), \delta'_a(CH_3O)$
1450(~)	1448 sh	1074	1452 m, sh, p	$\delta_{s}(CH_{3}O)$
1270(~)	1275 sh	1274 sh	1265 m, sh, p	v(P=0) (see text)
1248	1253 vs	1253 vs	1246 s, p	ν(P=O)
1186	1184 m	1185 m	1188 w, p	$\rho(CH_3O)$
1075	1060	10/0	1163 w	$\rho'(CH_3O)$
1067	1069 vs	1069 vs	1067 m, p	ν(CO)
1035(~)	1038 vs	1038 vs $)$	1024 -) ν(CO)
1028	1028 sh	1027 sh	1034 s) S (CD D) S (CD D)
965 vw	1028 sn 960 vw	961 vw		$\delta_a(CD_3P), \delta'_a(CD_3P)$
903 UW	900 <i>vw</i>	901 <i>vw</i>	026	$488 \times 2 = 976$
842	847 s	840 s	926 vw	$\delta_s(CD_3P)$
	04/3		846 m	$v_a(PO_2)$
802	704	799 s	802 s, p	$v_s(PO_2)$
716	704 m 661 m	711 m 667 m	716 s, p	$\rho(CD_3P)$
671 497	001 m 482 m	66 / m 481 m	673 vs, p	$\nu(PC), \rho'(CD_3P)$
487 458	482 m 461 w	481 <i>m</i> 461 <i>sh</i>	488 s, p	δ(POC)
458 410	401 W	401 5/1	412 m	$\delta_{s}(\text{CPO}_{3})$
392	409 vw 392 w		396 sh, p	$\delta_a(CPO_3), \delta'_a(CPO_3)$
374	286 w		$286 sn, p_3$	$\rho(CPO_3), \rho'(CPO_3)$
	224 sh		229 w, sh	$\gamma(POC)$
	195		198 m	γ(POC)
	94		170 111	libration
	74			noration

vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; p: polarized.

TABLE V
Vibrational spectra of CH₃PO(OCD₃)₂

i.r.	i.r.	i.r.	Raman	
pure \bar{v} I	CCl₄ ⊽ <i>I</i>	$\frac{\text{CS}_2}{\bar{v} I}$	pure v I	Assignments
			, ,	710016111101110
3884 w				896 + 2996 = 3893
3817 w				896 + 2925 = 382
2735 vw				806 + 2925 = 373
	3683 vw			688 + 3000 = 3688
3520 w				H ₂ O
3460 w	3450 vw	3450 vw)
3360 sh				1068 + 2265 = 333
3312 w				1068 + 2250 = 331
3140 vw	2000	2005	2000	1068 + 2080 = 314
2996 s	3000 vw	2995 tw	2998 m	$v_a(CH_3P), v'_a(CH_3P)$
2925 s	2933 vw	2930 tw	2927 s, p	$v_s(CH_3P)$
2860 vw	2860 rw		2850 vw, sh	$1423 \times 2 = 2846$
2830 sh			2825 vw, p	494 + 2250 = 274
2740 vw			2622	
2625 w			2622 vw	494 + 2140 = 2634
2495 w	2265 w. ah		2267 m	$1251 \times 2 = 2502$
2250	2265 w, sh		220/ m	$v_a(CD_3O)$
2250 vw 2210 s	2257 w		2214	$v_a'(CD_3O)$ $1101 \times 2 = 2202$
2210 8	2215 w		2214 m, p	901 + 1251 = 2153
2140 s	2157 vw 2138 vw		2136 m, p	$1069 \times 2 = 2138$
2140 s 2080 vs	2083 m	2078 m	2083 s, p	$v_{s}(CD_{3}O)$
$2000 \ vs$ $2000 \ sh$	2003 m	2078 m	1995 vw	758 + 1251 = 2009
2000 sn 1975 m			1993 UW	901 + 1068 = 1969
1855 sh				809 + 1052 = 186
1820 m	1825 vw			758 + 1068 = 1826
1800 sh	1023 UN		1800 vw	758 + 1052 = 1810
1734 m	1740 w	1738 w	1000 t#	1249 + 491 = 1740
1614 w	1740 W	1750 W	1625 vw	690 + 932 = 1622
1562 vw			1025 6.0	758 + 809 = 1567
1496 w				688 + 809 = 1497
1483 sh				407 + 1072 = 1482
1418 s	1418 w		1423 m	$\delta_a(CH_3P), \delta'_a(CH_3P)$
1355 sh				300 + 1045 = 134
1314	1313 m	1310 m	1318 vw	$\delta_{s}(CH_{3}P)$
	1295 vw	1295 vw		491 + 806 = 1297
1249	1257 s	1257 s	1251 s, p	$\nu(P=O)$
1099	1101 m	1099 m	1101 w, p	$\delta_a(\mathrm{CD_3O}), \delta_a'(\mathrm{CD_3O})$
			, ,	$\delta_s(CD_3O)$
1060(~)	1072 vs	1071 vs	1068 m	ν(CO)
1043	1056 vs	1052 vs	1045 w, sh	v(CO)
930	932 w	932 w	932 m, p	ρ (CH ₃ O), ρ '(CH ₃ O)
895	896 m	896 m	901 m	$\rho(CH_3P), \rho'(CH_3P)$
808		806 m	809 m	$v_a(PO_2)$
755		754 m	758 m	$v_{s}(PO_{2})$
688 <i>vs</i>	688 m	687 m	690 vs, p	v(PC) (see text)
			$682 \ vs, p$	v(PC) (see text)
		605 vw		$302 \times 2 = 604$
491	491 m	491 m	494 s, p	$\delta(POC)$
456 vs	457 w	458 w	458 w	$\delta_s(\text{CPO}_3)$
435 sh			435 vw	190 + 225 = 415
407 vs	404 vw, sh		408 m	δ (CPO.) δ'(CPO.)
392 sh	389 w		394 w ∫	$\delta_a(\text{CPO}_3), \delta_a'(\text{CPO}_3)$
•••	***		375 sh, p	$190 \times 2 = 380$
$300 \ s$	298 w		302 s	$\rho(CPO_3), \rho'(CPO_3)$
	207 sh		225 w, sh	γ(POC)
	192		190 w	γ(POC)
	85			libration

vs: very strong; s: strong; m: medium; w: weak, vw: very weak; sh: shoulder;
p: polarized.

TABLE VI
Vibrational spectra of CD₃PO(OCD₃)₂

i.r. pure	i.r. CCl₄	i.r. CS ₂	Raman pure	
\bar{v} I	$\bar{v}I$	$\tilde{v} I$	ν I	Assignments
3515 w	3.450	3450		H₂O
3450 w, sh	3450 vw	3450 vw		}
3315 w				1080 + 2247 = 332
3275 w				1030 + 2247 = 327
3150 w	2002	2000	2079	1080 + 2081 = 316
2983 m	2983 vw 2965 vw	2980 w	$2978 \ vw$	
2040	2903 vw	2930 vw	2936 vw	CH stretches of
2940 vw 2915 w	2908 vw	2930 tw	2903 vw	incompletely
2915 w 2875 vw	2900 UW	2903 EW	2903 vw 2876 vw	deuterated molecule
2830 vw			2010 UW	
2745 vw				476 + 2247 = 272
2505 w				$1254 \times 2 = 2508$
2270(~)	2262 sh	2265 sh	2268 w, sh	$v_a(CD_3O), v'_a(CD_3O)$
2250	2247 w	2245 w	2247 m	$v_a(CD_3D), v_a(CD_3D)$ $v_a(CD_3P), v_a'(CD_3P)$
2213 s	2209 w	2243 W	2213 w, p	$v_a(CD_{31}), v_a(CD_{31})$ $1099 \times 2 = 2198$
2144 s	2153 vw		2213 w, p	$v_s(CD_3P)$
21773	2133 w		2130 m, p	$v_s(CD_{31})$ $1052 \times 2 = 2104$
2080 s	2079 m	2079 m	2081 s, p	$v_s(CD_3O)$
2040 s 2040 vw	2019 m	2019 114	2031 s, p 2039 w, p	$1040 \times 2 = 2080$
2040 UN			1987 vw, sh	712 + 1254 = 1966
1966 w			1907 CW, 3H	1068 + 900 = 1966
1885 vw				806 + 1080 = 188
1847 w			1848 vw	806 + 1054 = 186
1828 w			1040 011	781 + 1054 = 183
1,020 1/			1803 vw	712 + 1080 = 179
1738 w		1730 vw	1740 vw	1080 + 655 = 1735
1705 m		1705 vw	1710 vw	1040 + 655 = 1695
1647 vw		1655 vw	1710 611	H ₂ O
1481 w		1000 011	1484 vw. sh	1.20
1461 w 1459 vw			1458 w	CH deformations of
1439 vw 1446 w			1430 W	incompletely
1393 w			1398 vw	deuterated molecule
1369 vw		1367 vw	1370 vw	deuterated motecute
1309 UW		1280 sh	13/1 64	v(P=O) (see text)
1252	1261 s	1263 vs	1254 m, p	v(P=O)
1163 rw	1165 vw	1165 vw	1254 m, p	$\delta_a(\mathrm{CD_3O}), \delta_a'(\mathrm{CD_3O})$
1100	1100 m	1099 m	1099 m, p	$\delta_s(CD_3O)$
1080	1080 vs	1080 vs)	10 <i>>> m</i> , p	(v(CO))
1000	1000 63	1000 65 (1068 m	\(\(\cup\)
1052	1055 vs	1054 vs	1000 ///	\v(CO)
1030	1029 w	1037 w	1040 m, p	$\delta_a(CD_3P), \delta'_a(CD_3P)$
965	955 w	955 w	, ,	$\delta_s(CD_3P)$
925	928 w	928 m	925 m, p	$\rho(CD_3O)$
900	895 w	900 w	900 w, sh	$\rho'(CD_3O)$
807	0,0	806 s	808 w	$v_a(PO_2)$
781		778 s	781 m, p	$v_s(PO_2)$
712	710 m	709 m	712 s, p	$\rho(CD_3P)$
674 w			677 w, sh	$\rho'(CD_3P)$
655 s	654 m	655 m	655 vs, p	v(PC)
	473 m	473 m	476 s, p	$\delta(POC)$
447 s	449 w	446 w	451 w	$\delta_{\rm s}({\rm CPO_3})$
401 s	402 vw		403 w }	
382 s	381 w		384 w, p	$\delta_a(\text{CPO}_3), \delta_a'(\text{CPO}_3)$
279 s	275 w		278 m	$\rho(CPO_3), \rho'(CPO_3)$
	203 sh		211 w, sh	γ(POC)
	183		185 m	$\gamma(POC)$
	82			libration

vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; p: polarized.

of these phenomena appears to require more detailed (low temperature investigation, etc. ...) study of this region.

Some ambiguity in assignment of the intense i.r. band near 1000 cm⁻¹, characteristic for P-O-C groups exists.12 As there are two P-O and two C-O stretches in the molecule, a total of 4 stretching bands will be anticipated. It can be expected that the P-O stretches will couple to a symmetric and an asymmetric component, while this would be much less so for the C-O stretches. This then implies that the P-O frequencies would be more separated than the C-O frequencies, while for the former, one polarized and one depolarized component can be expected. For H9 two intense i.r. doublet come into consideration for these vibrations. Due to their intensity, they are easily recognized in the other derivatives. As can be seen from the tables, in general the 800 cm⁻¹ doublet separation is higher than for the 1060 cm⁻¹ doublet, which would allow assignment based on the above separation consideration. For H9, the 1050 cm⁻¹ doublet consists in Raman of one depolarized and one weakly polarized component, while the 850 cm⁻¹ doublet consists of two depolarized bands. For D3 for instance the polarization situation is the same for the 1050 cm⁻¹ doublet, while near 820 cm⁻¹ one depolarized and one strongly polarized component are present. It is clear that depolarization ratios are an inadequate criterion to assign the present vibrations. Also, inspection of the tables shows that the band shifts upon deuteration are contradictory with anticipations from mass effects upon v(CO) and $v(PO_2)$ vibrations. The reason for this probably is mechanical coupling of these stretches with CH₃ deformational modes, which undergo strong shifts with deuteration. Much "softer" however is the 12C/13C substitution: all methyl deformation and rocking frequencies remain almost unaltered, showing that the coupling does not change. Shifts then must be due to mass effects. A harmonic oscillator approximation suggests that the frequency ratio for CO stretches should be 1.023, while PO₂ stretches should remain unaltered. From the tables it is seen that the 1050 cm⁻¹ doublet is lowered by some 11.5 cm⁻¹ by the substitution, while the 800 cm⁻¹ doublet lowers 2 cm⁻¹. It is thus clear that for dimethylmethylphosphonate the 1050 cm⁻¹ doublet is due to CO stretches, leaving the PO₂ stretches to be assigned near 820 cm⁻¹. This is in agreement with the separation result stated above. Another, indirect, indication for this assignment can be found

in the magnitude of the frequencies. It has been shown by D. W. J. Cruickshank 14,15 that in a P-O(H) bond there is more $(d_{\pi} - p_{\pi})$ overlap than in a P-O(C) bond, due to hydrogen bonding effects. Thus the total P-O bond order in CH₃PO₃-H₂ will be higher than for the ester. In the absence of force constants we have to use the sum of all P-O stretching frequencies as a measure for the total bond order. In this way we obtain 3135 cm⁻¹ for the acid, ¹³ 3357 cm⁻¹ if we assign the 1050 cm⁻¹ doublet to the PO₂ stretches, and 2859 cm⁻¹ if the 850 cm⁻¹ doublet is identified with these vibrations. From what has been stated above, it is clear that the assignment of the 850 cm⁻¹ doublet to the PO₂ stretches is to be preferred over the other possibility.

The methyl torsions $\tau(CH_3O)$ and $\tau(CH_3P)$ can be expected in the region 100-300 cm⁻¹. As has been stated above, for these vibrations the isotopic ratios are practically the same as for C-H stretches. In this region of the spectra some shifts are observed upon deuteration. They however are all much smaller than those calculated from the $\tau(CH_3)/\tau(CD_3)$ ratio. We therefore conclude that neither in Raman nor in infrared are the methyl torsions observed. A theoretical argument for the absence of the torsions in i.e. can be suggested on the basis of CNDO/2 calculations on the compound:6,16 using dipole moment data obtained with this method, and employing a single symmetry coordinate to represent the torsions and a P-O-C out-of-plane deformation, an intensity ratio of 10⁵ in favour of the out-of-plane deformation is calculated.16 Even allowing for the simplicity of the vibration model and for inadequacies of the CNDO/2 method, the observation of only weak i.r. bands in the POC deformation region suggests strongly that the torsions are too weak to be detected in the i.r.

In Table VII we have indicated the observed CPO₃ deformation and rocking frequencies, together with the total π -bond order, of some phosphonic acids. These data were taken from Refs. 7, 15 and 17. It is clear that with increasing total π -bond order the deformations shift upward while the

TABLE VII

CPO₃-Deformation frequencies

Compound	Σηπ	$\delta s({\rm CPO_3})$	$\delta a({\rm CPO_3})$	$\rho(\text{CPO}_3)$
CH ₃ PO ₃ H ₂	1.62	493	446	305
CH ₂ ClPO ₃ H ₂	1.66	518	456	302

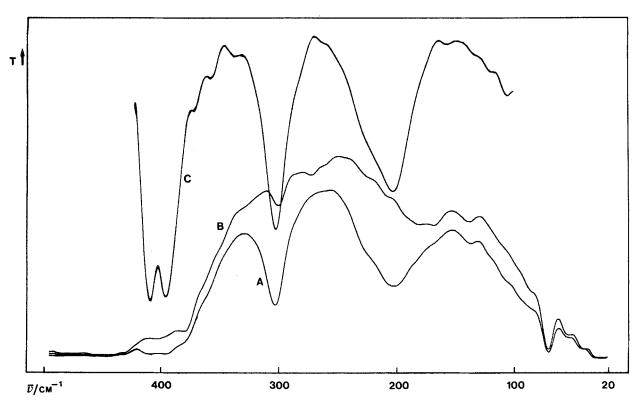


FIGURE 3 Far-infrared spectrum of $CH_3PO(OCH_3)_2$ in benzene (10%) with 6.25 μ m beam splitter. A: sample, B: background; C: ratio.

rocking frequencies are less influenced. In the Raman spectrum of H9 bands are observed at 499, 464 and a doublet at 412-394 cm⁻¹. Due to the lower total π -bond order in the ester compared to $CH_3PO_3H_2$, it is logical, in view of the frequencies in Table VII, to assign the CPO_3 deformations in H9 to the bands at 464, 412 and 394 cm.⁻¹ In the region around 300 cm⁻¹, where from the results in Table VII the rockings are predicted, only a single band is observed. This is assigned to the CPO_3 rocking.

In the low frequency region of the spectra, the P-O-C in-plane and out-of-plane deformations remain to be assigned. The former are to be expected at higher frequencies because of the rehybridisation during this motion. In the spectra of H9 bands at 499, 231 and 201 cm⁻¹ have not been identified yet. Consequently we assign both in-plane deformations accidentally degenerate at 499 cm⁻¹ and the out-of-plane deformations at 231 and 201 cm⁻¹. The frequency ratio of the out-of-plane deformations is 1.15. This appears rather large for vibrations localised in analogous group-

ings. This number can however be rationalized from the truncated Fourier series analysis we performed on the conformational curves of CH₃-PO(OCH₃)₂: this analysis allows an analytical representation of the curves that give the energy of the molecule as a function of the dihedral angle defining the orientation of a methoxy grouping.⁶ Near the minima, such a curve describes the out-ofplane vibrational coordinate for that particular equilibrium position. It consequently is possible to calculate $(\partial^2 V/\partial \rho^2)_{\rho=\min}$, the force constant governing the out-of-plane movement. This has been performed for the curve $\rho_2 = 60^{\circ}$ (using the nomenclature of Ref. 18) for each of the three minima that occur in it. These minima correspond to the three staggered conformations that are possible for the methoxy grouping. The force constants that are obtained show the ratio 1:1.79: 0.86 for the minima at 59, 188 and 290° respectively. For the $(\pm ap; +sc)$ conformer, which is the most stable according to CNDO/26 the methoxy groupings appear with dihedral angles of 51 and 189 degrees. The above model calculation

then shows that the ratio of the out-of-plane force constants must be near 1.79, which gives a frequency ratio of $(1.79)^{1/2} = 1.34$. This result clearly shows that, as observed, the out-of-plane frequencies can differ substantially from one another.

Below 100 cm⁻¹ an intense, wide band is observed. Although the maximum is obscured by phenomena due to the polyethylene window absorption, the maxima can be determined reproducibly by extrapolation from band centres at transmissions below the band maximum. As is clear from the tables, a downward shift of the band maximum is observed with increasing deuteration. This band is assigned to the librational motions of the molecules. Its high intensity and relatively high frequency can be understood from the high polarity of the molecule, while the frequency shift must be due to the increasing moments of inertia.

REFERENCES

- C. I. Meyrick and H. W. Thompson, J. Chem. Soc., 1950, 225.
- G. G. Guilbault, E. Scheide, and J. Das, Spectrosc. Lett., 1, 167 (1968).
- 3. F. Hérail, C.R. Acad. Sci. Paris, Sér. C., 262, 1493 (1966).
- 4. F. Hérail, C.R. Acad. Sci. Paris, Sér. C., 262, 1624 (1966).
- 5. F. Marsault-Hérail, J. Chim. Phys., 68, 274 (1971).
- B. J. Van der Veken and M. A. Herman, J. Mol. Struct., 42, 161 (1978).
- B. J. Van der Veken and M. A. Herman, J. Mol. Struct., 15, 225 (1973).
- 8. J. Laane, J. Chem. Phys., 55, 2514 (1971).
- B. J. von der Veken, D. H. C. Harris and G. Haines, J. Chem. Soc. Farad. II, 76, 7485 (1980).
- Upon request to the authors, copies of the spectra of the other species will be supplied.
- F. Hérail and V. Viossat, C.R. Acad. Sci. Paris, 259, 4629 (1964).
- L. C. Thomas, Interpretation of the infrared spectra of organophosphorus compounds, Heyden, London, 1974, p. 90.
- B. J. Van der Veken and M. A. Herman, J. Mol. Struct., 15, 225 (1973).
- 14. D. W. J. Cruickshank J. Chem. Soc., 1961, 5486.
- B. J. Van der Veken and M. A. Herman, J. Mol. Struct., 34, 229 (1976).
- 16. B. J. Van der Veken, Aggregaathesis, Antwerpen, 1979.
- 17. B. J. Van der Veken, J. Mol. Struct., 25, 75 (1975).
- B. J. Van der Veken and M. A. Herman, J. Mol. Struct., 44, 245 (1978).